Installation, service and maintenance instructions for the fixed part of withdrawable version circuit-breakers

## Emax



## Index

1. Description ..... page
1.1 General characteristics ..... 1
1.2 Fixed part construction characteristics ..... 1
2. Checking on receipt ..... 1
3. Storage, lifting and weights ..... 1
4. Installation ..... 2
4.1 Installation room ..... 2
4.2 Installation of the fixed part of withdrawable circuit-breaker ..... 《 2
4.2.1 Preparation of the fixed part ..... " 2
4.2.2 Installation of the fixed part ..... " 3
4.2.3 Installation of the fixed part on board a ship ..... « 4
4.3 Installation of the flange on the compartment door ..... " 4
5. Electrical connections ..... « 5
5.1 Connections to the power circuit ..... " 5
5.1.1 Shapes of the terminals ..... « 5
5.1.2 Examples of positioning the connection busbars according to the types of terminal ..... « 5
5.1.3 Assembly procedures of the connection busbars ..... " 6
5.2 Earthing ..... " 7
5.3 Wiring the circuit-breaker auxiliary circuits ..... « 7
5.3.1 Withdrawable circuit-breaker ..... 7
6. Fixed part accessories ..... 8
6.1 Electrical accessories ..... " 8
6.1.1 Auxiliary contacts ..... « 8
6.2 Mechanical accessories ..... " 8
6.2.1 Accessory for shutter padlock ..... « 8
6.2.2 Mechanical lock on compartment door ..... " 8
6.2.3 Interlock between circuit-breakers ..... 8
7. Overall dimensions ..... 9
8. Circuit diagrams ..... 16

| Dwg. |  | Resp.Off. | Title $\begin{gathered}\text { In } \\ \\ \text { in } \\ \text { in } \\ \text { w }\end{gathered}$ | Installation, service and maintenance instruction for the fixed part of withdrawable version circuit-breakers | noug |
| :---: | :---: | :---: | :---: | :---: | :---: |
| App. |  | Take-over Off. |  |  | en |
| Model | L2234 |  | Apparatus | Emax | Scale |
|  | L2778 |  |  |  |  |
| MBD ABB SACE $\quad$ Doc. No $_{\text {N }}$ 1SDH000461R0002 |  |  |  |  |  |

## 1. Description

### 1.1 General Characteristics

The SACE Emax series of circuit-breakers consists of a steel sheet structure which houses the operating mechanism, the poles and the auxiliary parts. Each pole, insulated from the others, contains the circuit-breaking parts and the current transformer of the corresponding phase.
The structure of the poles differs according to whether the circuit-breaker is selective or current-limiting.
The fixed version circuit-breaker has its own terminals for connection to the power circuit; in the withdrawable version the circuit-breaker comprises the moving part of the apparatus, which is completed with a fixed part fitted with the terminals for connection to the power circuit of the installation. The moving part and the fixed part are coupled by means of special contacts installed in the fixed part.

### 1.2 Fixed part construction characteristics



1 Steel sheet supporting structure
2 Earthing contacts (a: for all versions; b: forE4, E6)
3 Safety shutters (IP20 degree of protection)
4 Insulating terminal supportbase
5 Terminals
6 Contacts for signalling connected/test isolated/disconnected (on request)
7 Sliding contacts
8 Padlock for safety shutters (on request))
9 Anti-racking-in lock for circuit-breakers of differentsize
10 Fixing holes (qty 4 forE 1, E2, E3, 6 forE4, E6)

Fig. 1

## 2. Checking on receipt

Examine the state of the material received and its consistency with the content of the order. Should any damage or errors be found on unpacking, which must be carried out carefully, make the relative notification within and not over 5 days from the receipt of the material. The notification must indicate the number of the shipping note.

## 3. Storage, lifting and weights

The fixed part, protected by an external wooden crate, is fixed by means of screws to the transport pallet or to the bottom of the packing case. If the fixed part has to remain in the warehouse even for a short time before being put into service, after checking it on receipt, it must be put back in its container and covered with a waterproof sheet.

## Caution

- Use a dry, dust-free room free of aggressive chemical agents as a storage room
- Position the fixed part on a horizontal surface, not in direct contact with the floor, but on a suitable support surface (Fig. 2)
- The maximum number of stackable circuit-breakers is indicated in figure 3.


Fig. 2
Fig. 3

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $1 / 25$ |



Fig. 4

Table of the fixed parts weights (Kg.)

| Fixed part | $\mathbf{3}$ poles withdrawable <br> $\mathbf{k g}$ | $\mathbf{4}$ poles withdrawable <br> $\mathbf{k g}$ |
| :--- | :--- | :--- |
| E1 | 25 | 28 |
| E2 | 28 | 32 |
| E3 | 38 | 45 |
| E4 | 50 | 48 |
| E4/f |  | 50 |
| E6 | 70 | 80 |
| E6/f |  | 85 |

Note
The above table refers to fixed parts with horizontal back terminals.

## 4. Installation

### 4.1 Installation room

Install the circuit-breaker in a dry, dust-free, non-corrosive room, and in such a way that it is not subject to shocks or vibrations; where this is not possible, install it inside a switchboard with a suitable degree of protection.
For the preparation of the installation room, please refer to the "Overall dimensions" chapter, which gives information on the following points:

- minimum installation volumes of the circuit-breakers and derived versions
- distances to be respected for circuit-breakers in compartments
- overall dimensions of the circuit-breakers
- fixing drillings
- compartment door drillings

The installation, commissioning and any ordinary and extraordinary maintenance have to be done by skilled personnel, with a detailed knowledge of the apparatus.

### 4.2 Installation of the fixed part of the withdrawable circuit-breaker

### 4.2.1 Preparation of the fixed part

## Assembly of the anti-racking-in lock

Before installing the fixed part, it is necessary to check the presence of the anti-racking-in lock for circuit-breakers with different electrical characteristics from those of the fixed part; if the anti-racking-in lock has been supplied separately, proceed to assemble it as follows:

- On the self-adhesive plate (4), find the assembly position of the stop bolts in relation to the circuit-breaker which has to be housed in the fixed part
- Insert the hexagonal-head screws (1) in the holes found in the previous item as shown in the figure
- Fix the screw with the washer (2) and nut (3).

Make sure that the anti-racking-in lock corresponding to the one installed on the fixed part is present on the circuit-breaker (moving part).

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $\mathrm{N}^{\circ}$ | 1SDH000461R0002 | Page $\mathrm{N}^{\circ}$ <br> $2 / 25$ |



Fig. 5 Fig. 6 $\qquad$

### 4.2.2 Installation of the fixed part

Attach the fixed part by means of the screws (1), washer (2) and nut (3) (M8 $\times 16$ ), supplied by ABB SACE. If other screws are used, make sure that the head of the screws does not extend more than 5.5 mm from the base of the fixed part.


Fig. 7

## Notes

(*) For the E1-E2-E3 fixed parts, there are four fixing points, whereas there are six for E4-E6.

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $3 / 25$ |

4.2.3 Installation of the fixed part on board a ship

Regarding the fixing points of the SACE Emax withdrawable version air circuit-breakers, for applications on board a ship, additional fixing on the sides of the fixed part itself is recommended (the M12 screws and the spacers are not provided in the supply)

## E1-E2-E3



E4-E6


Fig. 8
4.3 Installation of the flange on the compartment door (Fig. 9)

- Make the compartment door drillings specified in the "Overall dimensions" paragraph.
- Attach the flange (1) on the front of the compartment door, fixing it from the inside by means of the self-tapping screws (2).


Fig. 9

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $4 / 25$ |

## 5. Electrical connections

5.1 Connections to the power circuit
5.1.1 Shapes of the terminals


Horizontal rear terminals


Vertical rear terminals

VR


Front terminals


Flat terminals

## Note

The drawings are provided to show the type ofterminal in graphic form. The exactshape of the terminals is given in the "Overall dimensions"chapter. Different terminals can be installed between the top and bottom parts (inlet and outlet).

Fig. 14

### 5.1.2 Examples of positioning the connection busbars according to the types of terminal

The connection busbars enable the connection between the terminals of the circuit-breakers and the busbars of the switchgear. Their sizing must be carefully studied by the switchgear designer. Some examples of possible constructions in relation to the shape and size of the circuit-breaker terminals are given in this paragraph. The various types of terminals are of constantdimensions foreach size of circuit-breaker: itis normally advisable to exploit the whole contact surface of the terminal, so the width of the connection busbars should be the same as that of the terminal. Different connection capacities can be obtained by adjusting the thickness and number of busbars in parallel. In some cases, reductions in the width of the connection in relation to that of the terminal are allowable as shown in the following examples.It is possible to mount different terminals between the upper and lower part (input and output).


Fig. 11

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $\mathrm{N}^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $5 / 25$ |

Positioning the first anchoring baffle of the busbars according to the short-circuit current
Anchoring to the switchgear


| $\mathbf{P}$ | E1-E2 | E3-E4-E6 | E1-E6 |
| :--- | :---: | :---: | :---: |
| HORIZONTALI | 250 | 150 | - |
| VERTICAL | 250 | 150 | - |
| FRONT | - | - | 250 |
| FLAT | - | - | 250 |



FRONT


FLAT

Fig. 12

### 5.1.3 Assembly procedure for the connection busbars

Check the state of the contact surfaces of the connections very carefully: they must be very clean with no burrs, dents or traces of rust which must be eliminated using a fine file or an emery cloth to prevent localized increases in temperature. On completion of the operation, remove all traces of grease or dust with a cloth soaked in a suitable solvent. When copper connections are used, it is advisable to tin-plate the contact surfaces. When aluminium connections are used, it is advisable to apply a thin layer of Vaseline over the contact surfaces.
The connections must not exert any strain on the terminals in any direction
Always insert a large diameter flar washer and a spring washer between them (to spread the tightening pressure over a greater area).
Make the contact between connection and terminal and tighten the fixing screws completely.
Always use two wrenches (so as not to strain the insulating parts excessively), applying the tightening torque 70 Nm and use M12 high resistance screws. Check tightness after 24 hours.


Fig. 13

| Model | L2234 |  |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page ${ }^{\circ}$ <br> $6 / 25$ |  |

### 5.2 Earthing

The fixed part of the withdrawable circuit-breaker have one or two terminals on the rear, marked with the special symbol, for connection to earth (Fig. 7).
Each terminal is complete with a bolt for fixing the connection.
A conductor with a cross-section conforming to current standards must be used for the connection. Before assembling the connection, clean and degrease the area around the screw. After the assembly tighten the bolt with a torque of 70 Nm .

### 5.3 Wiring the circuit-breaker auxiliary circuits

### 5.3.1 Withdrawable circuit-breaker

For connection of the moving part to the auxiliary circuits, a connection with sliding contacts is available on the fixed part (see figure), identified by code $X$ on the electrical circuit diagram.
The terminals of the fixed connector are immediately accessible when the compartment door is open.
Furthermore, a terminal box identified by code XF is available for connecting the position contacts of the moving part in relation to the fixed part. The connector and terminal box have screw terminals.


E1-E2-E3
10 contacts in position


E1-E2-E3-E4-E6
5 contacts in position


E4-E6
10 contacts in position

## Caption

(1) Sliding contacts $(X)$
(2) Terminal box for position contacts (XF)
(3) Position contacts

Fig. 14

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $7 / 25$ |

## 6. Fixed part accessories

### 6.1 Electrical accessories

### 6.1.1 Auxiliary contacts

Auxiliary contacts installed on the circuit-breaker are available enable an indication of the circuit-breaker's status. A special version of the auxiliary contacts is also available (gold plated contacts) for a rated voltage under 24 V (digital signal).

| Un | In max | T |
| :--- | :--- | :--- |
| 125 V DC | 0.3 A | 10 ms |
| 250 V DC | 0.15 A | 10 ms |


| Un | In $\max$ | $\cos \varphi$ |
| :--- | :--- | :--- |
| 250 V AC | 5 A | 0.3 |

## Electrical signalling for circuit-breaker connected/test isolated/disconnected (Fig. 15)

In addition to mechanical signalling of the position of the circuit-breaker, it is possible to have electrical signalling by means of 5 or 10 auxiliary contacts which are installed on the fixed part.
Only available for circuit-breakers in withdrawable versions for installing on the fixed part
The auxiliary contacts can have the following configurations:
Reference figures in the electrical circuit diagrams: S75I (31-32) - S75T (31-32) - S75E (31-32)

- 5 contacts; group consisting of 2 connected signalling contacts, 2 disconnected signalling contacts and 1 test position signalling contact (main contacts isolated, but sliding contacts connected)
- 10 contacts; group consisting of 4 connected signalling contacts, 4 disconnected signalling contacts and 2 test position signalling contacts (main contacts isolated, but sliding contacts connected).


### 6.2 Mechanical accessories

### 6.2.1 Accessory for shutter padlocks (Fig.16)

They enable the shutters to be padlocked (installed on the fixed part) in the closed position.
Only available for circuit-breakers in withdrawable versions for installing on the fixed part.

### 6.2.2 Mechanical lock on compartment door

This prevents the compartment door from being opened when the circuit-breaker is closed (connected in the case of withdrawable circuitbreakers) and prevents circuit-breaker closing with the compartment door open.


Fig. 15


Fig. 16

### 6.2.3 Interlock between circuit-breakers

This mechanism makes the mechanical interlock between two or three circuit-breakers (even of different sizes and in any fixed/withdrawable version) by means of a flexible cable. The electrical circuit diagram for the electrical changeover by means of a relay (to be provided by the customer) is supplied with the mechanical interlock. The circuit-breakers can be installed vertically or horizontally.
Four types of interlocks are available:
type A: between 2 circuit-breakers (power supply + emergency)
type B: between 3 circuit-breakers (2 power supplies + emergency)
type C: between 3 circuit-breakers (2 power supplies + bus-tie)
type $\mathbf{D}$ : between 3 circuit-breakers (3 power supplies / a single closed circuit-breaker)


## Withdrawable circuit-breaker

Basic version with horizontal rear terminals


## Caption

(1) Inside edge of compartment door
(2) Segregation(where foreseen)
(3) Fixing fixed part $\varnothing 10$ drilling (use M8 screws)
(4) No. 1 M12 screw (E1, E2, E3) or no. 2 M12 screws (E4, E6) for earthing (included in the supply)
(5) Run from connected for a TEST to isolated
(6) Alternative drilling with 25 mm pitch for fixing fixed part
(7) Ventilation drilling on the switchgear

E1/E2


E2/E3/E4/E6


E3


|  | A | B | C | D | E | F <br> 3poles 4 poles |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E1 | 414 | 324 | 162 | 162 | 10 | - | - |
| E2 | 414 | 324 | 162 | 162 | 8 | - | - |
| E3 | 558 | 432 | 216 | 216 | 8 | 370 | 490 |
| E4 | 684 | 594 | 252 | 342 | 8 | 530 | 610 |
| E4/f | 774 | - | - | 342 | 8 | - | 700 |
| E6 | 936 | 810 | 342 | 468 | 8 | 750 | 870 |
| E6/f | 1062 | - | - | 468 | 8 | - | 1000 |

Fig. 17

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $9 / 25$ |

## Withdrawable circuit-breaker

Basic version with horizontal rear terminals


Fig. 18

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $10 / 25$ |

## Withdrawable circuit-breaker

Basic version with vertical rear terminals

## E1



E1
View A


E2/E4


E2
View A


## E3/E6



E3
View A


E4
View A


E4/f
View A


E6
View A


E6/f
View A


Fig. 19

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $11 / 25$ |



Fig. 20

| Model | L2234 |  |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page ${ }^{\circ}$ <br> $12 / 25$ |  |

## Withdrawable circuit-breaker

Version with flat terminals


E6


E6/f


Fig. 21

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $\mathrm{N}^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $13 / 25$ |



E1
View A


View A


View A


## E6

View A


E3
View A


E6/f
View A


Fig. 22


## Compartment dimensions



Compartment door drilling


Tightening torque of the fixing screws: 20 Nm Tightening torque of the main terminals: 70 Nm Tightening torque of the earthing screw: 70 Nm

## Compartment door mechanical lock

Door drilling
Minimum distance between the circuit-breaker and the switchgear wall


|  | A |  |
| :--- | :---: | :---: |
|  | 3 Poles | 4 Poles |
|  |  | 180 |
|  | 180 |  |
| E1 | 180 | 180 |
| E2 | 234 | 234 |
| E3 | 270 | 360 |
| E4 |  |  |
| E4/f | - | 360 |
| E6 | 360 | 486 |
| E6/f | - | 486 |

Fig. 23

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $15 / 25$ |

## 8. Circuit diagrams

## Warning

Before installing the circuit-breaker, carefully read notes $F$ and $O$ on the circuit diagrams.

## Operating status shown

The circuit diagram is for the following conditions:

- withdrawable circuit-breaker, open and racked-in
- circuits de-energised
- releases not tripped
- motor operating mechanism with springs unloaded.


## Versions

The diagram shows a circuit-breaker in withdrawable version; it can be applied to a fixed version circuit-breaker as well.

## Fixed version

The control circuits are fitted between terminals XV (connector X is not supplied).
With this version, the applications indicated in figures 31 and 32 cannot be provided.

## Withdrawable version

The control circuits are fitted between the poles of connector X (terminal box XV is not supplied).
Version without overcurrent release
With this version, the applications indicated in figures $13,14,41,42,43,44,45,46,47,48,62$ cannot be provided

## Version with PR121/P electronic release

With this version, the applications indicated in figures $42,43,44,45,46,47,48$ cannot be provided.

## Version with PR122/P electronic release

With this version, the applications indicated in figure 41 cannot be provided.

## Version with PR123/P electronic release

With this version, the applications indicated in figure 41 cannot be provided.

## Caption

$\square \quad=$ Circuit diagram figure number
= See note indicated by the letter
A1 $=$ Circuit-breaker accessories
A3 = Accessories applied to the fixed part of the circuit-breaker (for withdrawable version only)
A4 = Example switchgear and connections for control and signalling, outside the circuit-breaker
A13 $=$ PR021/K signalling unit (outside the circuit-breaker)
AY $\quad=$ SACE SOR TEST UNIT Test/monitoring Unit (see note R)
D = Electronic time-delay device of the undervoltage release, outside the circuit-breaker
$\mathrm{F} 1=$ Delayed-trip fuse
K51 $=$ PR121/P, PR122/P, PR123/P electronic release with the following protection functions:

- L overload protection with inverse long time-delay trip-setting II
- S short-circuit protection with inverse or definite short time-delay trip-setting I2
- I short-circuit protection with instantaneous time-delay trip-setting I3
- G earth fault protection with inverse short time-delay trip-setting 14

K51/1... $8=$ Contacts for the PR021/K signalling unit
K51/GZin(DBin) = Zone selectivity: for protection G (only with Vaux and PR122/P or PR123/P release) or "reverse" direction input for protection D (only with Vaux and PR123/P release)
K51/GZout(DBout) = Zone selectivity: for protection G (only with Vaux and PR122/P or PR123/P release) or "reverse" direction output for protection D (only with Vaux and PR123/P release)
K51/IN1 = Digital programmable input (available only with Vaux and release PR122/P or PR123/P with indicator module PR120/K)
K51/P1...P4 = Programmable electrical signalling (available only with Vaux and release PR122/P or PR123/P with indicator module PR120/K)
K51/SZin(Dfin) = Zone selectivity: input for protection S or "direct" input for protection D (only with Vaux and PR122/P or PR123/P release)
K51/SZout(DFout) = Zone selectivity: output for protection S or "direct" output for protection D (only with Vaux and PR122/P or PR123/ P release)
K51/YC = Closing control from PR122/P or PR123/P electronic release with communication module PR120/D-M
$\mathrm{K} 51 / \mathrm{YO}=$ Opening control from PR122/P or PR123/P electronic release with communication module PR120/D-M
$\mathrm{M} \quad=$ Motor for loading the closing springs
Q $\quad=$ Circuit-breaker
Q/1... $27=$ Circuit-breaker auxiliary contacts
S33M/1... 3 = Limit contacts for spring-loading motor
S43 = Switch for setting remote/local control
S51 = Contact for electrical signalling of circuit-breaker open due to tripping of the overcurrent release. The circuit-breaker may be closed only after pressing the reset pushbutton, or after energizing the coil for electrical reset (if available)
S75E/1.4 = Contacts for electrical signalling of circuit-breaker in disconnected position (only with withdrawable circuit-breakers)
S75I/1..5 = Contacts for electrical signalling of circuit-breaker in connected position (only with withdrawable circuit-breakers)
S75T/1..4 = Contacts for electrical signalling of circuit-breaker in test isolated position (only with withdrawable circuit-breakers)
CS $\quad=$ Pushbutton or contact for closing the circuit-breaker
SO $=$ Pushbutton or contact for opening the circuit-breaker
SO1 $1=$ Pushbutton or contact for opening the circuit-breaker with delayed trip
SO2 = Pushbutton or contact for opening the circuit-breaker with instantaneous trip
SR = Pushbutton or contact for electrical circuit-breaker reset
TI/L1 $=$ Current transformer located on phase L1
TI/L2 = Current transformer located on phase L2

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $\mathrm{N}^{\circ} \quad$Page $\mathrm{N}^{\circ}$ |  |  |


| TI/L3 | = Current transformer located on phase L3 |
| :---: | :---: |
| TO | = Homopolar toroidal current transformer (see note W) |
| Vaux | = Auxiliary power supply voltage (see note F) |
| UI/L1 | = Current sensor (Rogowski coil) located on phase L1 |
| UI/L2 | = Current sensor (Rogowski coil) located on phase L2 |
| UI/L3 | = Current sensor (Rogowski coil) located on phase L3 |
| UI/N | = Current sensor (Rogowski coil) located on neutral |
| UI/0 | = Current sensor (Rogowski coil) located on the conductor connecting to earth the star point of the MV/LV transformer (see note G) |
| W1 | = Serial interface with control system (external bus): EIA RS485 interface (see note E) |
| W2 | = Serial interface with the accessories of PR121/P, PR122/P and PR123/P releases (internal bus) |
| X | = Delivery connector for auxiliary circuits of withdrawable version circuit-breaker |
| X1...X7 | = Connectors for the accessories of the circuit-breaker |
| XF | = Delivery terminal box for the position contacts of the withdrawable circuit-breaker (located on the fixed part of the circuit-breaker) |
| XK1 | = Connector for power circuits of PR121/P, PR122/P and PR123/P releases |
| XK2 - XK3 | = Connectors for auxiliary circuits of PR121/P, PR122/P and PR123/P releases |
| XK4 | = Connector to signal open/close |
| XK5 | $=\mathrm{PR120V}$ module connector |
| XO | = Connector for YO1 release |
| XV | = Delivery terminal box for the auxiliary circuits of the fixed circuit-breaker |
| YC | = Shunt closing release |
| YO | = Shunt opening release |
| YO1 | = Overcurrent shunt opening release (trip coil) |
| YO2 | = Second shunt opening release (see note Q) |
| YR | = Coil to electrically reset the circuit-breaker |
| YU | = Undervoltage release (see notes B and Q) |

## Description of figures

Fig. $1=$ Motor circuit to load the closing springs.
Fig. $2=$ Circuit of shunt closing release.
Fig. $4=$ Shunt opening release
Fig. $6=$ Instantaneous undervoltage release (see notes B and Q).
Fig. $7=$ Undervoltage release with electronic time-delay device, outside the circuit-breaker (see notes $B$ and $Q$ )
Fig. $8=$ Second shunt opening release (see note Q).
Fig. $11=$ Contact for electrical signalling of springs loaded.
Fig. 12 = Contact for electrical signalling of undervoltage release energized (see notes B and S).
Fig. 13 = Contact for electrical signalling of circuit-breaker open due to tripping of the overcurrent release. The circuit-breaker may be closed only after pressing the reset pushbutton.
Fig. $14=$ Contact for electrical signalling of circuit-breaker open due to tripping of the overcurrent release and electrical reset coil. The circuitbreaker may be closed only after pressing the reset pushbutton or energizing the coil.
Fig. $21=$ First set of circuit-breaker auxiliary contacts.
Fig. $22=$ Second set of circuit-breaker auxiliary contacts (not available for PR122/P and PR123/P releases)(see note V)
Fig. $23=$ Third set of supplementary auxiliary contacts outside the circuit-breaker.
Fig. $31=$ First set of contacts for electrical signalling of circuit-breaker in connected, test isolated, disconnected position.
Fig. 32 = Second set of contacts for electrical signalling of circuit-breaker in connected, test isolated, disconnected position.
Fig. $41=$ Auxiliary circuits of PR121/P release (see note F).
Fig. $42=$ Auxiliary circuits of PR122/P and PR123/P releases (see notes F, M and V).
Fig. $43=$ Circuits of the measuring module PR120/V of the PR122/P and PR123/P releases internally connected to the three-pole and fourpole circuit-breaker (optional for the release PR122/P) (see note U).
Fig. $44=$ Circuits of the measuring module PR120/V of the PR122/P and PR123/P releases externally connected to the circuit-breaker (optional for the release PR122/P) (see note $0, \mathrm{U}$ and X ).
Fig. $45=$ Circuits of the communication module PR120/D-M of the PR122/P and PR123/P releases (optional) (see note E).
Fig. $46=$ Circuits of the indicator module PR120/K of the PR122/P and PR123/P releases - connection 1 (optional) (see note V)
Fig. $47=$ Circuits of the indicator module PR120/K of the PR122/P and PR123/P releases - connection 2 (optional) (see note V).
Fig. $48=$ Circuits of the measuring module PR120/V of the PR122/P and PR123/P releases connected inside the three-pole circuit-breaker with outside neutral conductor (optional for the release PR122/P)(see note U).
Fig. $61=$ SACE SOR TEST UNIT Test/monitoring Unit (see note R)
Fig. $62=$ Circuits of the signalling unit PR021/K (outside the circuit-breaker).

## Incompatibilities

The circuits indicated in the following figures cannot be supplied simultaneously on the same circuit-breaker:
6-7-8
13-14
22-46-47
43-44-48

## Notes

A) The circuit-breaker is only fitted with the accessories specified in the ABB SACE order acknowledgement. Consult this catalogue for information on how to make out an order
B) The undervoltage release is supplied for operation using a power supply branched on the supply side of the circuit-breaker or from an independent source. The circuit-breaker can only close when the release is energized (there is a mechanical lock on closing).
If the same power supply is used for the closing and undervoltage releases and the circuit-breaker is required to close automatically when the auxiliary power supply comes back on, a 30 ms delay must be introduced between the undervoltage release accept signal and the energizing of the closing release. This may be achieved using an external circuit comprising a permanent make contact, the contact shown in fig. 12 and a time-delay relay.
E) For the EIA RS485 serial interface connection see document RH0298 regarding MODBUS communication.

| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page N <br> $17 / 25$ |

F) The auxiliary voltage Vaux allows actuation of all operations of the PR121/P, PR122/P and PR123/P releases.

Having requested a Vaux insulated from earth, one must use "galvanically separated converters" in compliance with IEC 60950 (UL 1950) or equivalent standards that ensure a common mode current or leakage current (see IEC 478/1, CEI 22/3) not greater than 3.5 mA , IEC 60364 41 and CEI 64-8.
G) Earth fault protection is available with the PR122/P and PR123/P releases by means of a current sensor located on the conductor connecting to earth the star center of the MV/LV transformer.
The connections between terminals 1 and 2 (or 3) of current transformer UI/O and poles T7 and T8 of the X (or XV) connector must be made with a two-pole shielded and stranded cable (type BELDEN 3105A/3105B) no more than 15 m long. The shield must be earthed on the circuitbreaker side and current sensor side.
N) With releases PR122/P and PR123/P, the connections to the zone selectivity inputs and outputs must be made with a two-pole shielded and stranded cable (type BELDEN 3105A/3105B), no more than 300 m long. The shield must be earthed on the selectivity input side.
0) Systems with a rated voltage greater than 690 V require the use of an insulation voltage transformerto connectto the busbars (connectaccording to the diagrams on the sheet provided with the kit 1SDH000460R0508).
P) With releases PR122/P and PR123/P with communication module PR120/D-M, the coils YO and YC are controlled directly from contacts K51/ YO and K51/YC with maximum voltages of 110-120 VDC and 240-250 VAC.
Q) The second shunt opening release may be installed as an alternative to the undervoltage release.
R) The SACE SOR TEST UNIT + opening release (YO) is guaranteed to operate starting at $75 \%$ of the Vaux of the opening release itself. While the YO power supply contact is closing (short-circuit on terminals 4 and 5), the SACE SOR TEST UNIT is unable to detect the opening coil status.
Consequently:

- For continuously powered opening coil, the TEST FAILED and ALARM signals will be activated
- If the coil opening command is of the pulsing type, the TEST FAILED signal may appear at the same time. In this case, the TEST FAILED signal is actually an alarm signal only if it remains lit for more than 20s.
S) Also available in the version with normally-closed contact
U) The measuring module PR120/V is always supplied with relay PR123/P.
V) If fig. 22 is present (second set of auxiliary contacts) simultaneously as relay PR122/P (or PR123/P), the contacts for the zone selectivity in fig. 42 (K51/Zin, K51/Zout, K51/Gzin and K51/Gzout) are not wired. In addition, the indicator module PR120/K in figures 46 and 47 cannot be supplied.
W) For the connections between TO toroidal transformer and poles of $C B X$ (or XV) connector, use a shielded 4-pole cable with paired braided wires (BELDEN 9696 paired type), length not exceeding 10m. The shielding will be grounded on CB side.
X) T3 and T4 poles of X (or XV) connector are used to measure voltage when U>690V. In this case, they must be connected to the secondary winding of the TU voltage transformer (see fig. 44). Ask ABB SACE for applications of the residual current protection with voltages higher than 690 V .
Y) The shielding of the connection cable will be grounded on CB side only. The connection must be made with a two-pole shielded and stranded cable (type BELDEN 3105A) no more than 15 m long.

| Model | L2234 |  |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page No <br> $18 / 25$ |  |

 (general symbol)


Overcurrent relay with adjustable short time-la characteritic


| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $19 / 25$ |

## Circuit diagram - Operating status

Three-pole circuit-breakerwith PR121/P, PR122/P orPR123/P electronic release

Four-pole circuit-breaker with PR121/P, PR122/P, PR123/P electronic release

Three-pole circuit-breaker with PR122/P orPR123/P electronic release, residual current protection and $\mathrm{U}<=690 \mathrm{~V}$.




| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $20 / 25$ |





| *B) | *B) | *Q) |
| :---: | :---: | :---: |
| 6 |  |  |
| $\mathrm{T}^{\mathrm{D} 1}$ | T01 | 01 |
| ¢01 | -01 | ¢ D1 |
|  | 亏 <br> $\times 5{ }^{1}$ <br> YU <br> ${ }^{x} \coprod^{1} 2$ <br> N | $\mathrm{YO2}$ |
| -02 | - 22 | © 0 |
| ${ }_{1}^{1} \mathrm{D} 2$ |  | ${ }_{T}^{\text {D2 }}$ |
|  |  | ニ----- |

## Signalling contacts


$\square$


| Model | L2234 |  |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $22 / 25$ |



PR120/V measuring module


| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R 0002 | Page $N^{\circ}$ <br> $\mathbf{2 3 / 2 5}$ |

PR120/D-M communication module


PR120/K signalling module


| Model | L2234 |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $\mathrm{N}^{\circ}$ | 1SDH000461R0002 | Page $\mathrm{N}^{\circ}$ <br> $\mathbf{2 4 / 2 5}$ |

PR021/K signalling unit


| Model | L2234 |  |  | Apparatus | Emax | Scale |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | L2778 |  | Doc. $N^{\circ}$ | 1SDH000461R0002 | Page $N^{\circ}$ <br> $25 / 25$ |  |

ABB SACE S.p.A.
L.V. Breakers

Via Baioni, 35-24123 Bergamo - Italy
Tel.: +39 035.395.111 - Telefax: +39 035.395.306-433
http://www.abb.com

