Power Supply via Bus Cable, Calculation

Supposed all devices are supplied externally, the supply has to feed the PDP21, PDP22 or PDQ22 connected to the bus. The supply current depends on the voltage (typical values):

Supply voltage:	19.2 V	24 V	31.2 V
Supply current typ. PDP22, PDP21	46 mA	37 mA	31 mA
Supply current typ. PDQ22	39 mA	31 mA	24 mA

To simplify the calculation the scheme below uses the highest of the currents but - on the other hand - does not regard the increased copper resistance and voltage drop for higher environment temperatures.

All slaves even the slave most distant from the supply unit need to be supplied with min. $\mathbf{1 9 . 2}$ V DC including ripple. That means that the power supply unit at the beginning of the line has to provide a higher voltage to compensate the voltage drops due to the line resistance.

The recommended power supply unit can be adjusted to 28 V DC:
Power Supply 24V / 5A adjustable Order code: 1SVR423416R0100 Type: CP-24/5.0 The power supply has always to be fused with 4A max. (M12 System Limit)

Remark:
The max. number of physical stations on one bus segment is 32 , defined by the RS-485 standard. That means: For more than 31 slaves an additional segment (coupled with repeater) has to be provided that needs normally a separate supply unit.

In accordance with this fact the calculation below provides max 31 slaves + one master. Normally each repeater and RS-485 / fiber-optic converter represent also one physical station each on the RS-485 bus line.

The calculation with the scheme below takes into account:

- The most distant slave - situated at the end of the scheme - needs at least:
- Line resistance ($0.5 \mathrm{~mm}^{2}$) (can be changed):

Additional info:
max. output voltage of above recommended supply unit

Power Supply via Bus Cable, Calculation (continued)

Calculation procedure

1. Define number of slaves, e.g. including 10% spare slaves:

Example: 25 slaves ---> Master at the row of the 26th slave.
2. Define average length of the bus line between the slaves:

The total length appears in the row of the master, green cell.
It is necessary to consider also the max. length of the signal lines.
Individual length can be filled in the green cells near the slaves.
3. Fill in current of the slaves:

The current of a slave is the calculated sum of the current consumption of a PDQ22 or a PDP21 or a PDP22 and the current consumption of the connected slaves (please find them in the accordant technical data sheet).
Example PDQ22 $=30 \mathrm{~mA}$
Individual currents can be filled in in the yellow cells near the slaves.

Result: Voltage in the row of the master to be delivered by the power supply, total Current and total Bus Length.
This supply voltage must not exceed 31,2 volts !

Result: Sum Current

The calculated sum of all currents in a bus line must not exceed 4000 mA (System Limit)!

22.1 Slave -		63,0 m	40 mA	880 mA	21,28 V
	3,0 m				
21.1 Slave -		60,0 m	40 mA	840 mA	21,09 V
	3,0 m				
20.1 Slave		57,0 m	40 mA	800 mA	20,91 V
	3,0 m				
191 Slave		54,0 m	40 mA	760 mA	20,74 V
	3,0 m				
181 Slave -		51,0 m	40 mA	720 mA	20,58 V
	3,0 m				
17 1 Slave -		48,0 m	40 mA	680 mA	20,42 V
	3,0 m				
16 1 Slave		45,0 m	40 mA	640 mA	20,28 V
	3,0 m				
151 Slave		42,0 m	40 mA	600 mA	20,15 V
14 1 Slave-		39,0 m	40 mA	560 mA	20,02 V
	3,0 m				
13.1 Slave		36,0 m	40 mA	520 mA	19,90 V
	3,0 m				
121 Slave		33,0 m	40 mA	480 mA	19,79 V
	3,0 m				
11 1 Slave		30,0 m	40 mA	440 mA	19,70 V
	3,0 m				
10.1 Slave	3,0] m	27,0 m	40 mA	400 mA	19,61 V
1 Slave-		24,0 m	40 mA	360 mA	19,52 V
	3,0 m				
1 Slave		21,0 m	40 mA	320 mA	19,45 V
	3,0 m				
1 Slave		18,0 m	40 mA	280 mA	19,39 V
	3,0 m				
1 Slave -		15,0 m	40 mA	240 mA	19,34 V
1 Slave	3,0 m				
1 Slave	3,0	12,0 m	40 mA	200 mA	19,29 V
1 Slave		9,0 m	40 mA	160 mA	$19,25 \mathrm{~V}$
	3,0 m				
31 Slave		6,0 m	40 mA	120 mA	19,23 V
$2{ }^{1}$ Slave-	3,0 m				
	$3,0 \mathrm{~m}$				19,21 V
$1{ }^{1}$ Slave		0,0 m	40 mA	40 mA	19,20 V

Results - The power supply unit has to deliver min. 23.7 V incl. ripple and tolerances
of this - The power supply unit has to deliver min. 1280 mA
example - The bus length is $<100 \mathrm{~m}$. Note: Consider length and baud rate.

